A photoactivable source of relaxing factor in genetic hypertension.

نویسندگان

  • J R Charpie
  • A Peters
  • R C Webb
چکیده

Deendothelialized rings of rabbit aorta relax after exposure to UV light because of release of a relaxing factor that is similar if not identical to nitric oxide. We tested the hypothesis that production of the photo-induced relaxing factor is impaired in a rat model of genetic hypertension. Thoracic aortas were removed from adult Wistar-Kyoto rats and stroke-prone spontaneously hypertensive rats. The vessels were cut into rings, denuded of endothelium, and placed in a muscle bath for isometric force measurement. Rings were contracted with phenylephrine, and relaxation was measured after exposure to UV light. Aortic rings from stroke-prone spontaneously hypertensive rats relaxed to a greater extent after exposure to UV light than did rings from Wistar-Kyoto rats. An inhibitor of nitric oxide synthase (N omega-nitro-L-arginine) greatly potentiated the relaxation responses to light in both strains, and these enhanced relaxations were attenuated by tetraethylammonium chloride, potassium chloride, ouabain, or inhibitors of guanylate cyclase. These results suggest that UV irradiation induces relaxation in aortic smooth muscle that is greater in hypertensive than normotensive rats and is greatly enhanced after addition of inhibitors of nitric oxide production. Thus, the unidentified photo-induced relaxing factor is not solely nitric oxide but may also represent either a hyperpolarizing factor, because depolarization blocks the responses entirely, or possibly smooth muscle guanylate cyclase that might itself be photoactivable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endothelium-derived relaxing factors. A perspective from in vivo data.

We review below published studies of endothelium-dependent vasodilation in vivo. Endothelium-dependent vasodilation has been demonstrated in conduit arteries in vivo and in the cerebral, coronary, mesenteric, and femoral vascular beds as well as in the microcirculation of the brain and the microcirculation of cremaster muscle. The available evidence, although not complete, strongly suggests tha...

متن کامل

The Possible Involvement of Nitric Oxide/Endothelium Derived Relaxing Factor in Atropine-Induced Vasorelaxation

Atropine has been used to block cholinergic neurotransmission in basic research. Large doses of atropine cause vasodilation of the blood vessels in the skin. This effect is apparently unconnected with the antimuscarinic activity of atropine and seems to be due to a direct action on the blood vessels. It has been suggested that atropine blocks muscarinic receptors at low doses and it induces th...

متن کامل

A Perspective From In Vivo Data

We review below published studies of endothelium-dependent vasodilation in vivo. Endothelium-dependent vasodilation has been demonstrated in conduit arteries in vivo and in the cerebral, coronary, mesenteric, and femoral vascular beds as well as in the microcirculation of the brain and the microcirculation of cremaster muscle. The available evidence, although not complete, strongly suggests tha...

متن کامل

Association between Genetic Variants of Nitric Oxide/cGMP Pathway and Susceptibility to Hypertension in Kermanshah Province

 Background and purpose: Hypertension is a global health challenge due to its high prevalence and increased risk of cardiovascular disease. It is a multifactorial disease in which both genetic and environmental factors are involved. So far, a number of genes and pathways have been proposed to be associated with HTN, including the nitric oxide/cGMP pathway. To further clarify the role of NO /cGM...

متن کامل

Endothelium and control of vascular function. State of the Art lecture.

The response of isolated blood vessels to a variety of vasoactive agonists is modulated by the presence of endothelial cells. Indeed, these cells can release both dilator and constrictor substances. The major endothelium-derived relaxing factor may be nitric oxide, which activates soluble guanylate cyclase in the smooth muscle, although the endothelial cells also secrete an unidentified hyperpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 23 6 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1994